
Objektovo orientované
programovanie

1. Prednáška
LS 2024/2025

Juraj Petrík

1

Čo tu budeme (snáď) robiť?

• OOP a Java
• Vývoj softvéru všeobecne a v

kontexte OOP
• Testovanie
• Správa závislostí
• Ladenie
• Kolekcie
• Generickosť
• Vzory
• GUI

2

• Anotácie
• Dokumentácia
• Logovanie
• Paralelizmus
• IO
• Perzistencia
• Reflexia
• Metriky
• Iné OO jazyky
• Pozvané prednášky

Prečo ďalšia paradigma?

• Priblížiť ľudskému mysleniu v reálnom svete

• Napr. Java, Python, Scala, C++

• Pozor na paradigm shift (potrebný tréning, zvyk)

3

Procedural vs Object oriented

4

#include <stdio.h>
#include <string.h>

struct Person {
 char name[50];
 int age;

};

void greet(struct Person p) {
 printf("Hello, %s! You are %d years old.\n",

 p.name, p.age);
}

int main() {
 struct Person person1;
 strcpy(person1.name, "Alice");
 person1.age = 25;

 greet(person1);
 return 0;

}

class Person {
 private String name;
 private int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public void greet() {
 System.out.println("Hello, " + name + "! You

 are " + age + " years old.");
 }
}

public class Main {
 public static void main(String[] args) {
 Person person1 = new Person("Alice", 25);
 person1.greet();
 }
}

Ako [úspešne] absolvovať predmet?

• Semester (na pripustenie ku skúške 30b):
• Test – 20b (8b minimum), ~8. týždeň semestra
• Úlohy na cvičeniach (10b)
• Semestrálny projekt (30b), info ~ 2. týždeň semestra:

• Špecifikácia a architektúra (2b)
• Checkpoint (5b)
• Konečná implementácia (20b)
• Prezentovanie (3b), ~10.-12. týždeň cvičení

• Bonus 5b

• Skúška (40b, 10b minimum)
• Stupnica je štandardná (študijný poriadok STU)
• Akademická bezúhonnosť (študijný poriadok STU)

5

Rozvrh

• Nahrádzanie cvičení
• https://fiit.jur1cek.eu/

6

Čo budeme potrebovať

• IDE (Intellij IDEA, Eclipse for JAVA, Netbeans)
• Visual Studio Code
• Notepad

• JDK 21 (LTS)
• Predinštalované v učebniach/laboch

7

Prečo objektovo orientované?

• Paralela s reálnym svetom
• „Veci“ vnímame ako objekty
• Ten istý typ objektu (trieda) sa môže nachádzať vo svete viac krát (objekt)

• Objekty
• Majú nejaké vlastnosti (atribúty)
• Vieme s nimi niečo robiť (metódy)

8

Java

• Veľa materiálov
• Ekosystém
• Silno typový jazyk
• “Write once, run everywhere” – Google “Saying that Java is nice

because it works on all OS's is like saying”

• Nakoniec je to vlastne jedno ☺

9

Ako funguje Java?

• JVM vie optimalizovať kód počas behu
• Áno, Javoviny vedia alokovať veľa pamäte
• Rýchlosť (veľmi zovšeobecnené): C++ > Java > Python

10

Source code
a.java

Compiler
javac a.java

Byte Code
a.class

JVM

Čo musí minimálne mať programovací jazyk
aby bol použiteľný?
• „Pamäť“
• Vetvenie
• Cyklenie

11

Hello world

12

package sk.stuba.fiit;

public class Main {
 public static void main(String[] args) {
 System.out.printf("Hello and welcome!");

 for (int i = 1; i <= 5; i++) {
 System.out.println("i = " + i);
 }
 }
}

balík (sk -> stuba -> fiit)

trieda

metóda (main je špeciálna)

....

balík1

balík2

Metódy, triedy, balíčky

13

Atribut1
Atribut2

TriedaA

metóda2

metóda1

Atribut1
Atribut2

TriedaB

metóda2

metóda1

Naming conventions

• Balíky: edu.cmu.cs.bovik.cheese

• Triedy: class ImageSprite;

• Rozhrania: interface RasterDelegate;

• Metódy: getBackground();

• Premenné: float myWidth;
• Konštanty: static final int MIN_WIDTH = 4;

• https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html

14

Formátovanie kódu

• Áno
• Ako?

• Konzistentne
• V tíme
• V čase

15

Premenné

• Primitive vs Object reference (https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html)

• Garbage Collector

16

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Trieda

• Predloha (blueprint) pre objekty
• Atribúty
• Metódy

• Vnorené triedy

17

(UML)

• Unified Modeling Language

18

Trieda vs Objekt

• Trieda = Predloha na tvorbu objektov
• Objekt = inštancia triedy, keyword new

• Jablko (trieda), moje jablko (objekt), tvoje jablko (objekt)

19

Základné prvky OOP

• Enkapsulácia (zapuzdrenie)
• Dedičnosť
• Polymorfizmus
• Abstrakcia

20

Enkapsulácia (zapuzdrenie)

• Nemanipulujeme priamo s dátami, ale pomocou metód
• V Jave napr. keyword private
• Mutátory, ale nie len to

21

Dedičnosť

• Umožňuje „odvodzovanie“ tried z iných tried
• Vzniká strom
• V Jave keyword extends

22

Polymorfizmus

• Compile time
• Method overloading – rovnaké meno metód, rôzne parametre

• Runtime
• Method overriding – pri dedení
• Virtual functions

23

Abstrakcia

• “Skrývanie“ internej implementácie
• Abstrakcia je na úrovni návrhu (design), enkapsulácia na úrovni

implementácie
• V Jave napr. Abstract class a Interface

24

	Slide 1: Objektovo orientované programovanie
	Slide 2: Čo tu budeme (snáď) robiť?
	Slide 3: Prečo ďalšia paradigma?
	Slide 4: Procedural vs Object oriented
	Slide 5: Ako [úspešne] absolvovať predmet?
	Slide 6: Rozvrh
	Slide 7: Čo budeme potrebovať
	Slide 8: Prečo objektovo orientované?
	Slide 9: Java
	Slide 10: Ako funguje Java?
	Slide 11: Čo musí minimálne mať programovací jazyk aby bol použiteľný?
	Slide 12: Hello world
	Slide 13: Metódy, triedy, balíčky
	Slide 14: Naming conventions
	Slide 15: Formátovanie kódu
	Slide 16: Premenné
	Slide 17: Trieda
	Slide 18: (UML)
	Slide 19: Trieda vs Objekt
	Slide 20: Základné prvky OOP
	Slide 21: Enkapsulácia (zapuzdrenie)
	Slide 22: Dedičnosť
	Slide 23: Polymorfizmus
	Slide 24: Abstrakcia

