Objektovo orientované
programovanie

1. Prednaska
LS 2024/2025
Juraj Petrik

Co tu budeme (snad) robit?

* OOP alJava * Anotacie

* \/yvoj softvéru vdeobecne av * Dokumentacia
kontexte OOP * Logovanie

* Testovanie e Paralelizmus

* Sprava zavislosti * 1O

e Ladenie * Perzistencia

e Kolekcie e Reflexia

* Metriky
* Iné OO jazyky
* Pozvané prednasky

e Generickost
* \/zory
e GUI

Preco dalsia paradigma?

* Priblizit ludskému mysleniu v realnom svete

* Napr. Java, Python, Scala, C++

* Pozor na paradigm shift (potrebny tréning, zvyk)

Procedural vs Object oriented

Ako [uspesne] absolvovat predmet?

 Semester (na pripustenie ku skuske 30b):

e Test-20b (8b minimum), ~8. tyzden semestra

« Ulohy na cvi¢eniach (10b)

 Semestralny projekt (30b), info ~ 2. tyzden semestra:
« Specifikacia a architektura (2b)
* Checkpoint (5b)
 Konec¢na implementacia (20b)
* Prezentovanie (3b), ~10.-12. tyZzden cviceni

* Bonus 5b

e Skuska (40b, 10b minimum)
e Stupnica je standardna (studijny poriadok STU)
* Akademicka bezuhonnost (studijny poriadok STU)

Rozvrh

Den 8.00-8.50 9.00-9.50 10.00-10.50 11.00-11.50 12.00-12.50 13.00-13.50 14.00-14.50 15.00-15.50 16.00-16.50 17.00-17.50 18.00-18.50 19.00-19.50
-2.01/c(CPUc) (BA-FIIT-FIIT) / * -2.01/c(CPUc) (BA-FIIT-FIIT) / *
Po Objektovo-orientované Objektovo-orientované
programovanie programovanie
A. PovaZanova A. PovaZanova
-2.01/a(CPUa) (BA-FIIT-FIIT) / * -2.01/a(CPUa) (BA-FIIT-FIIT) / * -2.01/a(CPUa) (BA-FIIT-FIIT) / *
Ut Objektovo-orientované Objektovo-orientované Objektovo-orientované
programovanie programovanie programovanie
A. PovaZanova A. PovaZanova P. Podhorsky
-2.01/b(CPUD) (BA-FIIT-FIIT) / * -2.01/b(CPUb) (BA-FIIT-FIIT) / *
Objektovo-orientované Objektovo-orientované
programovanie programovanie
0. Udvardi 0. Udvardi
-2.01/a(CPUa) (BA-FIIT-FIIT) / * -2.01/a(CPUa) (BA-FIIT-FILT) / * -2.01/b(CPUb) (BA-FIIT-FIIT) / * -2.01/b(CPUb) (BA-FIIT-FIIT) / *
St Objektovo-orientované Objektovo-orientované Objektovo-orientované Objektovo-orientované
programovanie programovanie programovanie programovanie
A. A. Saleh A. A. Saleh A. L. Algnatri A. L. Algnatri
-2.01/c(CPUc) (BA-FIIT-FIIT) / * -2.01/c(CPUc) (BA-FIIT-FIIT) / *
Objektovo-orientované Objektovo-orientované
programovanie programovanie
A. Skyvova A. Skyvova
-1.61 (Aula Magna) (BA-FIIT-FIIT)
&t Objektovo—orient?vané
programovanie
1. Petrik
Pi

e Nahradzanie cviceni
* https://fiit.jurlcek.eu/

Co budeme potrebovat

* IDE (Intellij IDEA, Eclipse for JAVA, Netbeans)
* Visual Studio Code
* Notepad

e JDK 21 (LTS)
 Predinstalované v ucebniach/laboch

Preco objektovo orientované?

* Paralela s realnym svetom
* Veci“ vnimame ako objekty
* Ten isty typ objektu (trieda) sa mbéze nachadzat vo svete viac krat (objekt)

* Objekty
* Maju nejaké vlastnosti (atributy)
* Vieme s nimi nieco robit (metody)

Java

* Vela materialov
* Ekosystem
* Silno typovy jazyk

* “Write once, run everywhere” — Google “Saying that Java is nice
because it works on all OS's is like saying”

* Nakoniec je to vlastne jedno ©

Ako funguje Java?

Source code

a.java

Compiler

javac a.java

Byte Code

a.class

* JVM vie optimalizovat kéd pocCas behu

» Ano, Javoviny vedia alokovat vela pamate

* Rychlost (velmi zovseobecnené): C++ > Java > Python

JVM

10

Co musi minimalne mat programovaci jazyk
aby bol pouzitelny?
e ,Pamat"

* Vetvenie
* Cyklenie

11

Hello world

balik (sk -> stuba -> fiit)

package sk.stuba.fiit; —

public class Main { — > riede
public static void main(String[] args) { —_ —> metdda (main je $pecidlna)
System.out.printf("Hello and welcome!");

for (inti=1;i<=5;i++){
System.out.printIn("i =" +1i);
}

J
J

12

Metody, triedy, balicky

//

-

_

S A

Atribut1 \ /

Atribut?2

metoda

metdda2

TriedaA / _

Atribut1 \

Atribut?2

metoda

metdda2

TriedaB /

_

balik2

/

_

balik1 /
13

Naming conventions

e Baliky: edu.cmu.cs.bovik.cheese

* Triedy: class ImageSprite;

* Rozhrania: interface RasterDelegate;

* Metddy: getBackground();

* Premenné: float myWidth;

e Konstanty: static final int MIN_WIDTH = 4;

* https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html

14

Formatovanie kodu

e Ano
e Ako?
e Konzistentne

e Vtime
e \/Case

15

Premenné

¢ Primitive VS ObjeCt refe renCe (https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html)
* Garbage Collector

16

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Trieda

* Predloha (blueprint) pre objekty
e Atributy
 Metdody

* Vhorené triedy

17

(UML)

* Unified Modeling Language

sk.stuba fiit.oop |

Person Pen
- name: String - type: int
- gender: int - maxCapacity: int
- height: int - actualCapacity: int
- weight: int + write(direction :int, length: int, canvas: Canvas): void
+ info(): String + percentagelefti): int

Trieda vs Objekt

* Trieda = Predloha na tvorbu objektov
* Objekt = instancia triedy, keyword new

* Jablko (trieda), moje jablko (objekt), tvoje jablko (objekt)

19

Zakladne prvky OOP

* Enkapsulacia (zapuzdrenie)
* Dedicnost

* Polymorfizmus

* Abstrakcia

20

Enkapsulacia (zapuzdrenie)

* Nemanipulujeme priamo s datami, ale pomocou metod

* \/ Jave napr. keyword private

* Mutatory. ale nie len to

sk.stuba fiit.oop

A Person

a Pen

- hame: String
- gender: int
- height: int

\— eight: int
+ infa(): String

- lype: int
- maxCapacity: int
-JactualCapacity: int

+ write(direction :int, length: int, canvas: Canvas): void
+ percentagelLeft(): int

21

Dedicnost

* Umoznuje ,,odvodzovanie® tried z inych tried

* Vznika strom
* \VV Jave keyword extends

Person

- gender: int

- name: String
- height: int

- weight: int

+ info(): String

Student

Teacher

Assistant

Assistant professor

Professor

22

Polymorfizmus

e Compile time
* Method overloading — rovnhnaké meno metod, rozne parametre

* Runtime
* Method overriding — pri dedeni
* Virtual functions

23

Abstrakcia

e “Skryvanie® internej implementacie

* Abstrakcia je na urovni navrhu (design), enkapsulacia na urovni
implementacie

* VV Jave napr. Abstract class a Interface

24

	Slide 1: Objektovo orientované programovanie
	Slide 2: Čo tu budeme (snáď) robiť?
	Slide 3: Prečo ďalšia paradigma?
	Slide 4: Procedural vs Object oriented
	Slide 5: Ako [úspešne] absolvovať predmet?
	Slide 6: Rozvrh
	Slide 7: Čo budeme potrebovať
	Slide 8: Prečo objektovo orientované?
	Slide 9: Java
	Slide 10: Ako funguje Java?
	Slide 11: Čo musí minimálne mať programovací jazyk aby bol použiteľný?
	Slide 12: Hello world
	Slide 13: Metódy, triedy, balíčky
	Slide 14: Naming conventions
	Slide 15: Formátovanie kódu
	Slide 16: Premenné
	Slide 17: Trieda
	Slide 18: (UML)
	Slide 19: Trieda vs Objekt
	Slide 20: Základné prvky OOP
	Slide 21: Enkapsulácia (zapuzdrenie)
	Slide 22: Dedičnosť
	Slide 23: Polymorfizmus
	Slide 24: Abstrakcia

