Objektovo Orientovaneé
programovanie

10. Prednaska
LS 2024/2025
Juraj Petrik



Lifecycle

Maven Build Lifecycle

* mvn clean: deletes the target directory. Validate »| Compile > Test

* mvn compile: compiles source code.

* mvn test: runs unit tests. )
Install -« Verify < Package

* mvn package: creates JAR/WAR file.

* mvn install: installs artifact in local !
repository.

Deploy

* mvn dependency:tree: shows
dependency hierarchy.



pom.xml

* <project>

. <modelVersion>4.0.0</modelVersion>
. <groupld>com.example</groupld>

. <artifactld>my-app</artifactid>

J <version>1.0.0</version>

. <dependencies>

. <dependency>

. <groupld>junit</groupld>

. <artifactld>junit</artifactld>
. <version>4.12</version>

. <scope>test</scope>

. </dependency>

. </dependencies>

* </project>



Maven

* mvn archetype:generate -Dgroupld=com.mycompany.app -
Dartifactld=my-app -DarchetypeArtifactld=maven-archetype-
quickstart -DarchetypeVersion=1.5 -DinteractiveMode=false



Maven phases

* Vlykonaju sa aj vsetky “predchadzajuce”, t.j. pri mvn compile:
1.validate

2.generate-sources
3.process-sources
4.generate-resources
S.process-resources
6.compile



Maven repozitare

* Local
* Central - https://mvnrepository.com/

e Remote


https://mvnrepository.com/

Maven zavislosti

 Direct vs transitive

<dependency>
<groupld>org.junit.jupiter</groupld>
<artifactld>junit-jupiter-api</artifactld>
<version>5.12.2</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>com.google.code.gson</groupld>
<artifactld>gson</artifactld>
<version>2.13.0</version>

</dependency>



SOLID

* Single Responsibility Principle

* Open-Closed Principle

* Liskov Substitution Principle

* Interface Segregation Principle
* Dependency Inversion Principle



Single Reponsibility Principle

* Trieda ma riesit a zodpovedat za jednu vec, nie za “vsetko”

class Employee { class Employee {
private String name; private String name;
private String position; private String position;
¥
public void saveToDatabase(Employee employee) {
} class EmployeeRepository {
public void save(Employee employee) {
public void calculateTax(Employee employee) { }
¥ }
public void generateReport(Employee employee) { class TaxCalculator {
} public double calculateTax(Employee employee) {
¥ ¥
}

class ReportGenerator {
public void generateReport(Employee employee) {

}




Open-Closed Principle

* Otvorenost pre rozsirenie, ale uzavretost pre upravu

class Shape { interface Shape {
private String type; double calculateArea();
}
public double calculateArea() {
if (type.equals(“"circle")) { class Circle implements Shape {
} else if (type.equals("rectangle")) { private double radius;
} class Rectangle implements Shape {
} @Override private double width;
} public double calculateArea() { private double height;
return Math.PI * radius * radius;
} @Override
} public double calculateArea() {

return width * height;

}
}

class Triangle implements Shape {
private double base;
private double height;

@Override

public double calculateArea() {
return 0.5 * base * height;

}




Liskov Substitution Principle

* Objekty nadtried maju byt zamenitelné s objektami podtried
(nadtriedy) bez fatalnych ddsledkov na aplikaciu

class Bird {
class Bird { }
public void fly() {
System.out.println("Flying"); class FlyingBird extends Bird {
} public void fly() {
} System.out.println("Flying");
}
class Ostrich extends Bird { }
@Override
public void fly() { class Ostrich extends Bird {
throw new }
UnsupportedOperationException("Ostriches can't fly!");
} class Sparrow extends FlyingBird {
} @Override
public void fly() {
public class Main { System.out.println("Sparrow flying");
public static void makeBirdFly(Bird bird) { }
bird.fly(); // exception! ¥
} J public class Main {
public static void makeBirdFly(FlyingBird bird) {
bird.fly();

}



Interface Segregation Principle

* Klient nema byt nuteny byt zavisly od rozhrani ktoré nepouziva

interface Workable {

interface Worker { void work();

void work(); }
void eat();

void sleep(); interface Eatable {

} void eat();
}

class HumanWorker implements Worker {
public void work() {}
public void eat() {}
public void sleep() {} }

interface Sleepable {
void sleep();

}

. class HumanWorker implements Workable, Eatable, Sleepable {
class RobotWorker implements Worker { public void work() {}

public void work() {} public void eat() {}

public vold eat() {} ublic void slee
public void sleep() {} ) P p() {3

class RobotWorker implements Workable {
public void work() {}

}




Dependency Inversion Principle

* Vlysoko urovnové moduly nemaju byt zavislé od nizko urovnovych.
Implementujte abstrakciu. interface suitchabie ¢

void turnOn();

class LightBulb { void turnOff();
public void turnOn() {} }
public void turnOff() {}
} class LightBulb implements Switchable {
public void turnOn() {}
class Switch { public void turnoff() {}
private LightBulb bulb; }
public Switch() { class Fan implements Switchable {
this.bulb = new LightBulb(); public void turnon() {}
} public void turnOff() {}
public void operate() { J
} class Switch {
by private Switchable device;

public Switch(Switchable device) {
this.device = device;

public void operate() {

¥ Switch lightSwitch = new Switch(new LightBulb());
} Switch fanSwitch = new Switch(new Fan());




Other important principles



DRY (Don’t Repeat Yourself)

* Neduplikujeme kod

class OrderProcessor {

public void processDomesticOrder(Order order) {
validate(order);
calculateDomesticTax(order);
saveToDatabase(order);
sendEmail (order, "domestic");

}

public void processInternationalOrder(Order order)

validate(order);
calculateInternationalTax(order);
saveToDatabase(order);

sendEmail (order, "international");

class OrderProcessor {

{

public void processOrder(Order order, TaxCalculator taxCalculator, String type)

validate(order);

taxCalculator.calculateTax(order);
saveToDatabase(order);

sendEmail(order, type);



KISS (Keep It Simple Stupid)

* Jednoduchsi kéd == Citatelnejsi a lepsie udrziavatelny

public class ComplexTemperatureConverter {
public double convertTemperature(double value,
String fromUnit, String toUnit) {
if (fromUnit.equals("Celsius") &&
toUnit.equals("Fahrenheit")) {
return (value * 9/5) + 32;
} else if (fromUnit.equals("Fahrenheit") &&
toUnit.equals("Celsius")) {
return (value - 32) * 5/9;
} else if (fromUnit.equals("Kelvin") &&
toUnit.equals("Celsius")) {
return value - 273.15;
}

public class TemperatureConverter {

public double celsiusToFahrenheit(double celsius) {
return (celsius * 9/5) + 32;

}

public double fahrenheitToCelsius(double fahrenheit) {
return (fahrenheit - 32) * 5/9;

}



YAGNI (You Aren’t Gonna Need [t)

* Neimplementujte nieco len preto, Ze mozno to v buducnosti bude
potrebné

interface EmployeeRepository {
Employee findById(long id);
List<Employee> findAll();
void save(Employee employee);
void delete(long id); }
// I will need these in the future, for sure!
List<Employee> findByDepartment(String

department);
List<Employee> findBySalaryRange(double min,

double max);

}

interface EmployeeRepository {
Employee findById(long id);
List<Employee> findAll();
void save(Employee employee);




Law of Demeter (Principle of Least
Knowledge)

* Objekt komunikuje iba s najblizsimi kamaratmi:

1.Each unit should have only limited knowledge about other units:
only units "closely" related to the current unit.

2.Each unit should only talk to its friends; don't talk to strangers.
3.0nly talk to your immediate friends.



Law of Demeter (Principle of Least

Knowledge)

class Customer {
private Wallet wallet;

public Wallet getWallet() {
return wallet;

}
}

class Wallet {
private double money;

public double getMoney() {
return money;

}
}

double money = customer.getWallet().getMoney();

class Customer {
private Wallet wallet;

public double getPayment(double amount) {
return wallet.subtractMoney(amount);
}

}

class Wallet {
private double money;

public double subtractMoney(double amount) {
if (money >= amount) {
money -= amount;
return amount;

}

return 0;

}

double money = customer.getPayment(100);



Composition Over Inheritance

* Ak je mozne uprednostnujte kompoziciu (skladanie) pred dedenim

 Co ked chcem robopsa, &o vie Stekat, ale nedycha?

class Animal {
void breathe() {}

}

class Mammal extends Animal {
void nurse() {}

}

class Dog extends Mammal {
void bark() {}

}

class Cat extends Mammal {
void meow() {}

}

interface Breathable {
void breathe();
}

interface Nursable {
void nurse();

}

interface Barkable {
void bark();
}

class Animal implements Breathable {
public void breathe() {}
}

class Dog {
private Breathable breathable;
private Barkable barkable;

public Dog(Breathable b, Barkable bark) {
this.breathable = b;
this.barkable = bark;

}

public void bark() {
barkable.bark();

}

class RobotDog A
private Barkable barkable;

public RobotDog(Barkable bark) {
this.barkable = bark;

}

public void bark() {

barkable.bark();
1



Principle of Least Astonishment

* Snazime sa co najmenej (negativne) prekvapit pouzivatelov (klientov)

class DateUtils { class DateUtils {
public static Date addMonths(Date date, int months) { public static Date addMonths(Date date, int months) {
Calendar cal = Calendar.getInstance(); if (date == null) {
cal.setTime(date); throw new IllegalArgumentException("Date cannot be null");
cal.add(Calendar.MONTH, months); }
return cal.getTime();
} Calendar cal = Calendar.getInstance();
} cal.setTime(date);

cal.add(Calendar.MONTH, months);

if (cal.get(Calendar.DAY_OF_MONTH) != date.getDay()) {
cal.set(Calendar.DAY_OF _MONTH,
Math.min(cal.getActualMaximum(Calendar.DAY_OF_MONTH),
date.getDay()));

}

return cal.getTime();




Quiz time



	Slide 1: Objektovo Orientované programovanie
	Slide 2: Lifecycle
	Slide 3: pom.xml
	Slide 4: Maven
	Slide 5: Maven phases
	Slide 6: Maven repozitare
	Slide 7: Maven zavislosti
	Slide 8: SOLID
	Slide 9: Single Reponsibility Principle
	Slide 10: Open-Closed Principle
	Slide 11: Liskov Substitution Principle
	Slide 12: Interface Segregation Principle
	Slide 13: Dependency Inversion Principle
	Slide 14: Other important principles
	Slide 15: DRY (Don’t Repeat Yourself)
	Slide 16: KISS (Keep It Simple Stupid)
	Slide 17: YAGNI (You Aren’t Gonna Need It)
	Slide 18: Law of Demeter (Principle of Least Knowledge)
	Slide 19: Law of Demeter (Principle of Least Knowledge)
	Slide 20: Composition Over Inheritance
	Slide 21: Principle of Least Astonishment
	Slide 22: Quiz time

