
Objektovo Orientované 
programovanie

10. Prednáška
LS 2024/2025

Juraj Petrík



Lifecycle
• mvn clean: deletes the target directory.

• mvn compile: compiles source code.

• mvn test: runs unit tests.

• mvn package: creates JAR/WAR file.

• mvn install: installs artifact in local 
repository.

• mvn dependency:tree: shows 
dependency hierarchy.



pom.xml
• <project>
• <modelVersion>4.0.0</modelVersion>
• <groupId>com.example</groupId>
• <artifactId>my-app</artifactId>
• <version>1.0.0</version>
•

• <dependencies>
• <dependency>
• <groupId>junit</groupId>
• <artifactId>junit</artifactId>
• <version>4.12</version>
• <scope>test</scope>
• </dependency>
• </dependencies>
• </project>



Maven

• mvn archetype:generate -DgroupId=com.mycompany.app -
DartifactId=my-app -DarchetypeArtifactId=maven-archetype-
quickstart -DarchetypeVersion=1.5 -DinteractiveMode=false



Maven phases

• Vykonaju sa aj vsetky “predchadzajuce”, t.j. pri mvn compile:
1.validate
2.generate-sources
3.process-sources
4.generate-resources
5.process-resources
6.compile



Maven repozitare

• Local
• Central - https://mvnrepository.com/
• Remote

https://mvnrepository.com/


Maven zavislosti

• Direct vs transitive

<dependency>
    <groupId>com.google.code.gson</groupId>
    <artifactId>gson</artifactId>
    <version>2.13.0</version>
</dependency>

<dependency>
    <groupId>org.junit.jupiter</groupId>
    <artifactId>junit-jupiter-api</artifactId>
    <version>5.12.2</version>
    <scope>test</scope>
</dependency>



SOLID

• Single Responsibility Principle
• Open-Closed Principle
• Liskov Substitution Principle
• Interface Segregation Principle
• Dependency Inversion Principle



Single Reponsibility Principle

• Trieda ma riešiť a zodpovedať za jednu vec, nie za “všetko”
class Employee {
  private String name;
  private String position;
    
  public void saveToDatabase(Employee employee) {
  }
  
  public void calculateTax(Employee employee) {
  }
  
  public void generateReport(Employee employee) {
  }
}

class Employee {
  private String name;
  private String position;

}

class EmployeeRepository {
  public void save(Employee employee) {
  }

}

class TaxCalculator {
  public double calculateTax(Employee employee) {
  }

}

class ReportGenerator {
  public void generateReport(Employee employee) {
  }

}



Open-Closed Principle

• Otvorenosť pre rozšírenie, ale uzavretosť pre úpravu
class Shape {
  private String type;
  
  public double calculateArea() {
    if (type.equals("circle")) {
    } else if (type.equals("rectangle")) {
    }
  }
}

interface Shape {
  double calculateArea();

}

class Circle implements Shape {
  private double radius;
  
  @Override
  public double calculateArea() {
    return Math.PI * radius * radius;
  }

}

class Rectangle implements Shape {
  private double width;
  private double height;
  
  @Override
  public double calculateArea() {
    return width * height;
  }

}

class Triangle implements Shape {
  private double base;
  private double height;
  
  @Override
  public double calculateArea() {
    return 0.5 * base * height;
  }

}



Liskov Substitution Principle

• Objekty nadtried majú byť zameniteľné s objektami podtried
(nadtriedy) bez fatálnych dôsledkov na aplikáciu

class Bird {
  public void fly() {
    System.out.println("Flying");
  }
}

class Ostrich extends Bird {
  @Override
  public void fly() {
    throw new 
UnsupportedOperationException("Ostriches can't fly!");
  }
}

public class Main {
  public static void makeBirdFly(Bird bird) {
    bird.fly(); // exception!
  }
}

class Bird {
}

class FlyingBird extends Bird {
  public void fly() {
    System.out.println("Flying");
  }
}

class Ostrich extends Bird {
}

class Sparrow extends FlyingBird {
  @Override
  public void fly() {
    System.out.println("Sparrow flying");
  }
}

public class Main {
  public static void makeBirdFly(FlyingBird bird) {
    bird.fly();
  }
}



Interface Segregation Principle

• Klient nemá byť nútený byť závislý od rozhraní ktoré nepoužíva
interface Worker {
  void work();
  void eat();
  void sleep();
}

class HumanWorker implements Worker {
  public void work() {}
  public void eat() {}
  public void sleep() {}
}

class RobotWorker implements Worker {
  public void work() {}
  public void eat() {}
  public void sleep() {}
}

interface Workable {
  void work();

}

interface Eatable {
  void eat();

}

interface Sleepable {
  void sleep();

}

class HumanWorker implements Workable, Eatable, Sleepable {
  public void work() {}
  public void eat() {}
  public void sleep() {}
}

class RobotWorker implements Workable {
  public void work() {}

}



Dependency Inversion Principle

• Vysoko úrovňové moduly nemajú byť závislé od nízko úrovňových. 
Implementujte abstrakciu.

class LightBulb {
  public void turnOn() {}
  public void turnOff() {}

}

class Switch {
  private LightBulb bulb;

  public Switch() {
    this.bulb = new LightBulb();
  }

  public void operate() {
  }

}

interface Switchable {
  void turnOn();
  void turnOff();

}

class LightBulb implements Switchable {
  public void turnOn() {}
  public void turnOff() {}

}

class Fan implements Switchable {
  public void turnOn() {}
  public void turnOff() {}

}

class Switch {
  private Switchable device;
  
  public Switch(Switchable device) {
    this.device = device;
  
  public void operate() {
  }

}
Switch lightSwitch = new Switch(new LightBulb());
Switch fanSwitch = new Switch(new Fan());



Other important principles



DRY (Don’t Repeat Yourself)

• Neduplikujeme kód
class OrderProcessor {
  public void processDomesticOrder(Order order) {
    validate(order);
    calculateDomesticTax(order);
    saveToDatabase(order);
    sendEmail(order, "domestic");
  }
  
  public void processInternationalOrder(Order order) 
{
    validate(order);
    calculateInternationalTax(order);
    saveToDatabase(order);
    sendEmail(order, "international");
  }
}

class OrderProcessor {
  public void processOrder(Order order, TaxCalculator taxCalculator, String type) 

{
    validate(order);
    taxCalculator.calculateTax(order);
    saveToDatabase(order);
    sendEmail(order, type);
  }

}



KISS (Keep It Simple Stupid)

• Jednoduchší kód == čitateľnejší a lepšie udržiavateľný
public class ComplexTemperatureConverter {
  public double convertTemperature(double value, 
String fromUnit, String toUnit) {
    if (fromUnit.equals("Celsius") && 
toUnit.equals("Fahrenheit")) {
      return (value * 9/5) + 32;
    } else if (fromUnit.equals("Fahrenheit") && 
toUnit.equals("Celsius")) {
      return (value - 32) * 5/9;
    } else if (fromUnit.equals("Kelvin") && 
toUnit.equals("Celsius")) {
      return value - 273.15;
    }
  }
}

public class TemperatureConverter {
  public double celsiusToFahrenheit(double celsius) {
    return (celsius * 9/5) + 32;
  }
  
  public double fahrenheitToCelsius(double fahrenheit) {
    return (fahrenheit - 32) * 5/9;
  }

}



YAGNI (You Aren’t Gonna Need It)

• Neimplementujte niečo len preto, že možno to v budúcnosti bude 
potrebné

interface EmployeeRepository {
  Employee findById(long id);
  List<Employee> findAll();
  void save(Employee employee);
  void delete(long id);
  // I will need these in the future, for sure!
  List<Employee> findByDepartment(String 
department);
  List<Employee> findBySalaryRange(double min, 
double max);
}

interface EmployeeRepository {
  Employee findById(long id);
  List<Employee> findAll();
  void save(Employee employee);

}



Law of Demeter (Principle of Least 
Knowledge)
• Objekt komunikuje iba s najbližšími kamarátmi:
1.Each unit should have only limited knowledge about other units: 

only units "closely" related to the current unit.
2.Each unit should only talk to its friends; don't talk to strangers.
3.Only talk to your immediate friends.



Law of Demeter (Principle of Least 
Knowledge)

class Customer {
  private Wallet wallet;
  
  public Wallet getWallet() {
    return wallet;
  }
}

class Wallet {
  private double money;
  
  public double getMoney() {
    return money;
  }
}

double money = customer.getWallet().getMoney();

class Customer {
  private Wallet wallet;
  
  public double getPayment(double amount) {
    return wallet.subtractMoney(amount);
  }

}

class Wallet {
  private double money;
  
  public double subtractMoney(double amount) {
    if (money >= amount) {
      money -= amount;
      return amount;
    }
    return 0;
  }

}

double money = customer.getPayment(100);



Composition Over Inheritance

• Ak je možné uprednostňujte kompozíciu (skladanie) pred dedením
• Čo keď chcem robopsa, čo vie štekať, ale nedýcha?

class Animal {
void breathe() {}
}

class Mammal extends Animal {
void nurse() {}
}

class Dog extends Mammal {
void bark() {}
}

class Cat extends Mammal {
void meow() {}
}

interface Breathable {
  void breathe();

}

interface Nursable {
  void nurse();

}

interface Barkable {
  void bark();

}

class Animal implements Breathable {
  public void breathe() {}
}

class Dog {
  private Breathable breathable;
  private Barkable barkable;
  
  public Dog(Breathable b, Barkable bark) {
    this.breathable = b;
    this.barkable = bark;
  }
  
  public void bark() {
    barkable.bark();
  }
}

class RobotDog {
  private Barkable barkable;
  
  public RobotDog(Barkable bark) {
    this.barkable = bark;
  }
  
  public void bark() {
    barkable.bark();
  }
}



Principle of Least Astonishment

• Snažíme sa čo najmenej (negatívne) prekvapiť používateľov (klientov)
class DateUtils {
  public static Date addMonths(Date date, int months) {
    Calendar cal = Calendar.getInstance();
    cal.setTime(date);
    cal.add(Calendar.MONTH, months);
    return cal.getTime();
  }
}

class DateUtils {
  public static Date addMonths(Date date, int months) {
    if (date == null) {
      throw new IllegalArgumentException("Date cannot be null");
    }
    
    Calendar cal = Calendar.getInstance();
    cal.setTime(date);
    cal.add(Calendar.MONTH, months);
    
    if (cal.get(Calendar.DAY_OF_MONTH) != date.getDay()) {
      cal.set(Calendar.DAY_OF_MONTH, 
         Math.min(cal.getActualMaximum(Calendar.DAY_OF_MONTH), 
              date.getDay()));
    }
    
    return cal.getTime();
  }

}



Quiz time


	Slide 1: Objektovo Orientované programovanie
	Slide 2: Lifecycle
	Slide 3: pom.xml
	Slide 4: Maven
	Slide 5: Maven phases
	Slide 6: Maven repozitare
	Slide 7: Maven zavislosti
	Slide 8: SOLID
	Slide 9: Single Reponsibility Principle
	Slide 10: Open-Closed Principle
	Slide 11: Liskov Substitution Principle
	Slide 12: Interface Segregation Principle
	Slide 13: Dependency Inversion Principle
	Slide 14: Other important principles
	Slide 15: DRY (Don’t Repeat Yourself)
	Slide 16: KISS (Keep It Simple Stupid)
	Slide 17: YAGNI (You Aren’t Gonna Need It)
	Slide 18: Law of Demeter (Principle of Least Knowledge)
	Slide 19: Law of Demeter (Principle of Least Knowledge)
	Slide 20: Composition Over Inheritance
	Slide 21: Principle of Least Astonishment
	Slide 22: Quiz time

