Objektovo Orientovane
programaovanie

4. Prednaska
LS 2024/2025
Juraj Petrik

Projekt

. Odovzdanie do konca tyzdna!
. Nakreslite si hlavné prvky GUI
. Dalsie info (najneskér) v pondelok rano

Biznis ranajky s - /| JETBRAINS
JetBrains

Business
Breakfast

Join us for an opportunity to discuss:

Internships and student opportunities at JetBrains.
Kotlin and other programming languages.
Mastering our cutting-edge tools.

Anything else you may have questions about.

- 18.3.2025

8:00 — 11:30 Business Breakfast

11:30 — 13:00 Lecture “What Makes Users

Love a Programming Language”

Decorator

. Pridavanie novéeho spravania pomocou obalovania (wrapping)
. Open-Closed Principle

Potion

drink() void
getDescription() String

o BasePotion

BasePotion()

drink() void
getDescription() String

o PotionDecorator
PotionDecorator(Potion)
o decoratedPotion Potion

drink() void
getDescription() String

o SpeedEffectDecorator o StrengthEffectDecorator

SpeedEffectDecorator(Potion)

o ExtendedDurationDecorator

StrengthEffectDecorator(Potion) ExtendedDurationDecorator(Potion)

drink() void
void getDescription() String

drink() void getDescription() String
getDescription() String drink()

Antivzory (pachy)

. Alebo ako nieCo nema vyzerat
. Long Class

. Large Method

. Duplicate code

. Dead Code

. Inappropiate intimacy

. Circular dependency

Refactoring

Odstranenie technologickeho dihu
- Aby bol kod éisty (clean)
Clsty kod =

MensSia chybovost
Jednoduchsia testovatelnost
Jednoduchsia rozsiritelnost
Jednoduchsie odrziavanie

Pamat: Stack a Heap

O uvolnenie pamate sa stara Garbage Collector
Ked na objekt neukazuje Ziadna referencia

Stack

- Volania metod
Lokalne premenné (referencia na objekt je lokalna premenna!)

Heap
- VsSetky objekty

-Xmx2048m
-Xms1048m

Fun with Hags constructors

. Konstruktor sa vola pri vzniku objektu (new, ale nie len new ©)

. Prekladac prida prazdny konstruktor, ak sme nedefinoval
konstruktor

. Super() — prida compiler
. This() a Super()

. Pri dedeni sa vykonavaju konstruktory z ,hora dole” (nadtrieda
-> podtrieda)

Exceptions handling

. Exception (vynimka) nastava ked sa stalo nieCo
nezelané/neoCakavané/nepovolené g

. _ _ £ catch (ExceptionA el) {}
Try catch fma”y catch (ExceptionB e2) {}

. Exception — checked (compiler) finally {}

- RuntimeException — unchecked, tieto vynimky by nemali
nastavat v ,produkcii”, nie je odporucaneé ich zachytavat

. SU to objekty, su polymorfné, od najkonkrétnejSieho po
najvseobecnejsie

Exceptions handling

. Throw/Throws
. Handle or declare

Custom Exception

. Extends Exception/RuntimeException

public class InvalidFoodException extends Exception {
public InvalidFoodException(String errorMessage) {
super(errorMessage);

i public Food(String name, int amount, int type, int heal, int feed)
i throws InvalidFoodException {
super(name, amount, type);
if (@amount<=0 || type<=0 || heal <=0 || feed <= 0) {
throw new InvalidFoodException("Can't construct Food,
can't have a negative amount, type, heal, feed");
}
this.setHeal(heal);
this.setFeed(feed);

}

Collections and generics

. List<String> names = new ArrayList<>();
. Collections.sort() -> natural ordering
. Podme zoradit Stevov

Generics

Parametrizovane typy <Typ>

Genericke triedy (napr. ArrayList):
Deklaracia triedy
Deklaracia metod pridavania
E je ,typ" s akym v triede chceme pracovat, compiler nahradi
E (T, R) je konvencia pomenovavania

Generické metody
public <T extends SomeClass> void takeThing(ArrayList<T> list)
I= public void takeThing(ArrayList<SomeClass > list)

Extends = extends OR implements

List, Queue, Set

==Java Interfaces=:=
EdList<E>

jawva.util

AT

==Java Classs==
(&vector<E>

jawa.util

==Java Clags==
(@ Arraylist<E>

java.util

=<lava Interfaces==
€3 Collection<E>

java.util

==lava Clags==
(S LinkedList<E>

java.util

i

=<Java Interface==
9 Queue<E:>

jawa.util

2

jawa.util

==lava Interfaces==
3 Set<E>

; :'«.
- .
' .
- -
- ..

==lava Interfaces==
€3 Deque<E>

java.util

==Java Interface==
¥ SortedSet<E>

java il

o

==Java Class==
(9 TreeSet<E>

java.util

==lava Class==
(® ArrayDeque<E>

java.util

==Java Clags==
(9 HashSet<E>

jawa.util

==Java Clags==
(3 LinkedHashSet<E»

java.util

Map

. Stale povazovaneé ze patri do Collections

<=lava Interface==

£ Map=K V>

java.util -::}—._.___._____‘_ <<=Jlava Interface==
9 SortedMap<K,V=>

G? E} jawa.util

z=lava Class== «<]ava Clagss= <<lava Class=>

(9 LinkedHashMap<K V> | —— =] (3 HashMap<K,\'> (9 TreeMap<K, V=

jawa. il java.util jawa.util

Lambda expressions and double colon
operator

. steveArrayList.sort((one, two) ->
one.getName().compareTo(two. getName()));

. steveArrayList.sort(Comparator.comparing(Character::getNam

e));

Testovanie

. Aké druhy testovania poznate?

Testovanie

. AKy druh tu budeme riesit?

Testovanie

. Jednotkové

- Integracneé

. Funkcéné

. Akceptacné

.- Vykonnostné
. E2E

. BezpecCnostne

Jednotkove testovanie (JUnNit)

. Testujeme jednotky (najmensie funkcné celky)

. Integralna sucast vyvoja - pisSe ich programator co
implementuje danu funkcionalitu

. Kod musi byt napisany tak, aby bol testovatelny

. Napr. pri TDD (test driven development) najprv piSem testy,
az potom implementujem

. Testujeme logiku, hranicnée pripady, exception handling, atd
. Assert once

Jednotkoveé testovanie

nttps://junit.org/junitS/docs/current/user-quide/
nttps://github.com/DiUS/java-faker
nttps://site.mockito.org/
nttps://github.com/Juricek/jUnit_examples/

https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://site.mockito.org/
https://site.mockito.org/
https://github.com/Jur1cek/jUnit_examples/
https://github.com/Jur1cek/jUnit_examples/

Quiz time

	Slide 1: Objektovo Orientované programovanie
	Slide 2: Projekt
	Slide 3: Biznis raňajky s JetBrains
	Slide 4: Decorator
	Slide 5
	Slide 6: Antivzory (pachy)
	Slide 7: Refactoring
	Slide 8: Pamäť: Stack a Heap
	Slide 9: Fun with flags constructors
	Slide 10: Exceptions handling
	Slide 11: Exceptions handling
	Slide 12: Custom Exception
	Slide 13: Collections and generics
	Slide 14: Generics
	Slide 15: List, Queue, Set
	Slide 16: Map
	Slide 17: Lambda expressions and double colon operator
	Slide 18: Testovanie
	Slide 19: Testovanie
	Slide 20: Testovanie
	Slide 21: Jednotkové testovanie (JUnit)
	Slide 22: Jednotkové testovanie
	Slide 23: Quiz time

