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Projekt

. Odovzdanie do konca tyzdna!
. Nakreslite si hlavné prvky GUI
. Dalsie info (najneskér) v pondelok rano



Biznis ranajky s - /| JETBRAINS
JetBrains

Business
Breakfast

Join us for an opportunity to discuss:

Internships and student opportunities at JetBrains.
Kotlin and other programming languages.
Mastering our cutting-edge tools.

Anything else you may have questions about.

- 18.3.2025

8:00 — 11:30 Business Breakfast

11:30 — 13:00 Lecture “What Makes Users

Love a Programming Language”




Decorator

. Pridavanie novéeho spravania pomocou obalovania (wrapping)
. Open-Closed Principle




Potion
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Antivzory (pachy)

. Alebo ako nieCo nema vyzerat
. Long Class

. Large Method

. Duplicate code

. Dead Code

. Inappropiate intimacy

. Circular dependency



Refactoring

Odstranenie technologickeho dihu
- Aby bol kod éisty (clean)
Clsty kod =

MensSia chybovost
Jednoduchsia testovatelnost
Jednoduchsia rozsiritelnost
Jednoduchsie odrziavanie



Pamat: Stack a Heap

O uvolnenie pamate sa stara Garbage Collector
Ked na objekt neukazuje Ziadna referencia

Stack

- Volania metod
Lokalne premenné (referencia na objekt je lokalna premenna!)

Heap
- VsSetky objekty

-Xmx2048m
-Xms1048m



Fun with Hags constructors

. Konstruktor sa vola pri vzniku objektu (new, ale nie len new ©)

. Prekladac prida prazdny konstruktor, ak sme nedefinoval
konstruktor

. Super() — prida compiler
. This() a Super()

. Pri dedeni sa vykonavaju konstruktory z ,hora dole” (nadtrieda
-> podtrieda)



Exceptions handling

. Exception (vynimka) nastava ked sa stalo nieCo
nezelané/neoCakavané/nepovolené g

. _ _ £ catch (ExceptionA el) {}
Try catch fma”y catch (ExceptionB e2) {}

. Exception — checked (compiler) finally {}

- RuntimeException — unchecked, tieto vynimky by nemali
nastavat v ,produkcii”, nie je odporucaneé ich zachytavat

. SU to objekty, su polymorfné, od najkonkrétnejSieho po
najvseobecnejsie



Exceptions handling

. Throw/Throws
. Handle or declare



Custom Exception

. Extends Exception/RuntimeException

public class InvalidFoodException extends Exception {
public InvalidFoodException(String errorMessage) {
super(errorMessage);

i public Food(String name, int amount, int type, int heal, int feed)
i throws InvalidFoodException {
super(name, amount, type);
if (@amount<=0 || type<=0 || heal <=0 || feed <= 0) {
throw new InvalidFoodException("Can't construct Food,
can't have a negative amount, type, heal, feed");
}
this.setHeal(heal);
this.setFeed(feed);

}



Collections and generics

. List<String> names = new ArrayList<>();
. Collections.sort() -> natural ordering
. Podme zoradit Stevov



Generics

Parametrizovane typy <Typ>

Genericke triedy (napr. ArrayList):
Deklaracia triedy
Deklaracia metod pridavania
E je ,typ" s akym v triede chceme pracovat, compiler nahradi
E (T, R) je konvencia pomenovavania

Generické metody
public <T extends SomeClass> void takeThing(ArrayList<T> list)
I= public void takeThing(ArrayList<SomeClass > list)

Extends = extends OR implements



List, Queue, Set
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Map

. Stale povazovaneé ze patri do Collections
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Lambda expressions and double colon
operator

. steveArrayList.sort((one, two) ->
one.getName().compareTo(two. getName()));

. steveArrayList.sort(Comparator.comparing(Character::getNam

e));



Testovanie

. Aké druhy testovania poznate?



Testovanie

. AKy druh tu budeme riesit?



Testovanie

. Jednotkové

- Integracneé

. Funkcéné

. Akceptacné

.- Vykonnostné
. E2E

. BezpecCnostne




Jednotkove testovanie (JUnNit)

. Testujeme jednotky (najmensie funkcné celky)

. Integralna sucast vyvoja - pisSe ich programator co
implementuje danu funkcionalitu

. Kod musi byt napisany tak, aby bol testovatelny

. Napr. pri TDD (test driven development) najprv piSem testy,
az potom implementujem

. Testujeme logiku, hranicnée pripady, exception handling, atd
. Assert once



Jednotkoveé testovanie

nttps://junit.org/junitS/docs/current/user-quide/
nttps://github.com/DiUS/java-faker
nttps://site.mockito.org/
nttps://github.com/Juricek/jUnit_examples/



https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://site.mockito.org/
https://site.mockito.org/
https://github.com/Jur1cek/jUnit_examples/
https://github.com/Jur1cek/jUnit_examples/

Quiz time
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