
Objektovo Orientované
programovanie

4. Prednáška
LS 2024/2025

Juraj Petrík

Projekt

• Odovzdanie do konca týždňa!

• Nakreslite si hlavné prvky GUI

• Ďalšie info (najneskôr) v pondelok ráno

Biznis raňajky s
JetBrains

• 18.3.2025

Decorator

• Pridávanie nového správania pomocou obaľovania (wrapping)

• Open-Closed Principle

Antivzory (pachy)

• Alebo ako niečo nemá vyzerať

• Long Class

• Large Method

• Duplicate code

• Dead Code

• Inappropiate intimacy

• Circular dependency

• …

Refactoring

• Odstránenie technologického dlhu

• Aby bol kód čistý (clean)

• Čistý kód =:
• Menšia chybovosť

• Jednoduchšia testovateľnosť

• Jednoduchšia rozšíriteľnosť

• Jednoduchšie održiavanie

Pamäť: Stack a Heap

• O uvoľnenie pamäte sa stará Garbage Collector
• Keď na objekt neukazuje žiadna referencia

• Stack
• Volania metód
• Lokálne premenné (referencia na objekt je lokálna premenná!)

• Heap
• Všetky objekty

• -Xmx2048m

• -Xms1048m

Fun with flags constructors

• Konštruktor sa volá pri vzniku objektu (new, ale nie len new ☺)

• Prekladač pridá prázdny konštruktor, ak sme nedefinovali
konštruktor

• Super() – pridá compiler

• This() a Super()

• Pri dedení sa vykonávajú konštruktory z „hora dole“ (nadtrieda
-> podtrieda)

Exceptions handling

• Exception (výnimka) nastáva keď sa stalo niečo
neželané/neočakávané/nepovolené

• Try – catch - finally

• Exception – checked (compiler)

• RuntimeException – unchecked, tieto výnimky by nemali
nastávať v „produkcii“, nie je odporúčané ich zachytávať

• Sú to objekty, sú polymorfné, od najkonkrétnejšieho po
najvšeobecnejšie

try {}
catch (ExceptionA e1) {}
catch (ExceptionB e2) {}
finally {}

Exceptions handling

• Throw/Throws

• Handle or declare

Custom Exception

• Extends Exception/RuntimeException

public class InvalidFoodException extends Exception {
public InvalidFoodException(String errorMessage) {

super(errorMessage);
}

}
public Food(String name, int amount, int type, int heal, int feed)
throws InvalidFoodException {

super(name, amount, type);
if (amount <= 0 || type <= 0 || heal <= 0 || feed <= 0) {

throw new InvalidFoodException("Can't construct Food,
can't have a negative amount, type, heal, feed");

}
this.setHeal(heal);
this.setFeed(feed);

}

Collections and generics

• List<String> names = new ArrayList<>();

• Collections.sort() -> natural ordering

• Poďme zoradiť Stevov

Generics

• Parametrizované typy <Typ>

• Generické triedy (napr. ArrayList):
• Deklarácia triedy
• Deklarácia metód pridávania
• E je „typ“ s akým v triede chceme pracovať, compiler nahradí
• E (T, R) je konvencia pomenovávania

• Generické metódy
• public <T extends SomeClass> void takeThing(ArrayList<T> list)
• != public void takeThing(ArrayList<SomeClass > list)

• Extends = extends OR implements

List, Queue, Set

Map

• Stále považované že patrí do Collections

Lambda expressions and double colon
operator
• steveArrayList.sort((one, two) ->

one.getName().compareTo(two. getName()));

• steveArrayList.sort(Comparator.comparing(Character::getNam
e));

Testovanie

• Aké druhy testovania poznáte?

Testovanie

• Aký druh tu budeme riešiť?

Testovanie

• Jednotkové

• Integračné

• Funkčné

• Akceptačné

• Výkonnostné

• E2E

• Bezpečnostné

Jednotkové testovanie (JUnit)

• Testujeme jednotky (najmenšie funkčné celky)

• Integrálna súčasť vývoja - píše ich programátor čo
implementuje danú funkcionalitu

• Kód musí byť napísaný tak, aby bol testovateľný

• Napr. pri TDD (test driven development) najprv píšem testy,
až potom implementujem

• Testujeme logiku, hraničné prípady, exception handling, atď

• Assert once

Jednotkové testovanie

• https://junit.org/junit5/docs/current/user-guide/

• https://github.com/DiUS/java-faker

• https://site.mockito.org/

• https://github.com/Jur1cek/jUnit_examples/

https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://github.com/DiUS/java-faker
https://site.mockito.org/
https://site.mockito.org/
https://github.com/Jur1cek/jUnit_examples/
https://github.com/Jur1cek/jUnit_examples/

Quiz time

	Slide 1: Objektovo Orientované programovanie
	Slide 2: Projekt
	Slide 3: Biznis raňajky s JetBrains
	Slide 4: Decorator
	Slide 5
	Slide 6: Antivzory (pachy)
	Slide 7: Refactoring
	Slide 8: Pamäť: Stack a Heap
	Slide 9: Fun with flags constructors
	Slide 10: Exceptions handling
	Slide 11: Exceptions handling
	Slide 12: Custom Exception
	Slide 13: Collections and generics
	Slide 14: Generics
	Slide 15: List, Queue, Set
	Slide 16: Map
	Slide 17: Lambda expressions and double colon operator
	Slide 18: Testovanie
	Slide 19: Testovanie
	Slide 20: Testovanie
	Slide 21: Jednotkové testovanie (JUnit)
	Slide 22: Jednotkové testovanie
	Slide 23: Quiz time

