Objektovo Orientovane
programaovanie

6. Prednaska
LS 2024/2025
Juraj Petrik

Test

. 8.4.2025 - 8:00 -11:00
. 1. - 7. prednaska a cviCenia
. 20 bodov, 8 minimum

Layout

Pridavanie widgetov (komponentov) do framu
Kreslenie 2D grafiky @

NORTH

VlIozenie obrazku

WEST CENTER

EAST

SOUTH

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Layout managers

. Komponenty je standardné mozne vnorit do seba

. BorderLayout — jeden komponent na region, zvycajne
nerespektuje rozmery komponentov (default pre frame)

. FlowLayout — zlava doprava, respektuje rozmery
komponentov, wrapping (default pre panel)

. BoxLayout — podobne ako FlowLayout ale zhora nadol, nema
automaticky component wrapping

. GridBaglLayout -

Layouts

Pozor na dalSie specifika, toto je “default” spravanie
@ - o

NORTH

button 1

button 2

button 1 button 2 button 3 button 4 button 5

button 3
WEST CENTER EAST

button 4

button 5

SOUTH

BorderLayout

. Ako sa spravaju regiony?

. 1 komponent na region

. Ako je to s velkostou komponentov?
- |t depends..

Komponenty vo Swingu

. Composite
. Background (JFrame, JPanel)

. Interactive components:
.- JButton
. JLabel
- JTextField
. JTextArea
- JList

GUI vseobecne

Co sa stane ked nie¢o dlhsie trva?
Oddelujte data, aplikaCnu logiku a prezentacnu vrstvu
Pouzivajte vhodny vzor. MVC vs MVP vs MVVM vs ...

MVC MVP

— +— ™ Presenter o E—

Model changed User actions Model changed | User actions

Update model Update U Update model Update U

|
y y

MVC

Model reprezentuje samotny datovy model

View riesi GUI

Controller riesi ,komunikaciu“ medzi modelom a viewom:
Implementuje listenery

Validuje vstupy MVC MVP

Aktualizuje model -
—» Presenter Q—‘

MVLC

« View — Composite
« Controller — Strategy
« Model — Observer

« Head First Design
Patterns 2" edition

Strategy

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

7

The user did
something

Q,QW\?O e

=

ﬂ.

—

The display consists of a nested set of
windows, panels, buttons, text labels, and so
on. Each display component is a composite
(like a window) or a leaf (like a button). When
the controller tells the view to update, it
only has to tell the top view component, and
Composite takes care of the rest.

/

—
Controller Change yotr
state Ob $ erver
Change your
display

play(){}

rip() {}

/ Buzn () (]

/I.Ve ChGﬂQEd!"_‘__———\\

View /
T need your state

information

class Player

Model

The model implements the Observer Pattern
to keep interested objects updated when
state changes occur. Using the Observer
Pattern keeps the model completely
independent of the views and controllers. It
allows us to use different views with the same
model, or even use multiple views at once.

MVP

Model reprezentuje samotny datovy model
View riesi GUI, ,nevie® o modely
Presenter je mediator medzi modelom a viewom

MVC MVP

- Presenter

Model changed User actions Model changed | User actions

Update model Update U Update model Update U

|
y y
- Changmn

SteveRepository

SteveView |

SteveService
SteveView : : {)

1 |view List<Steves 1| s Hony
VIE |

1' |\n-:--:lel

swingsteveiew

SwingSteveView
M)

JTextField 1

P e et e e e e e B |

AE] q
JTextField &

JTextField SteveController
Stevelistener) _) N
(SteveView, SteveServicd :
JTextField : Defau
i SteveView

tListModel < Steves

JList< Steves .

_ StevesService

JTextField
JCheckBox 1

i *

DefaultListModel<Steve> StevePresenter

JTextField

JTextField

N |

woresten

SteveMVCApp SteveMVPApp
pl) ' i

Paralelne spracovavanie pomocou vlakien

main thread

. 2 a viac veci robime naraz (subezne)

. Vlakna:
. “Lightweight procesy” _— |
- Spolocna pamat’ subthread main thread
- Pozor na deterministickost’ —
son
. Implementujem Runnable main hread

. Swing napr. javax.swing.SwingUtilities.invokeLater

Atomickost

. Synchronized metody

-V jednom case iba jedno vlakno smie pracovat s objektom

. Kazdy objekt ma zamok (lock), ale pouzivaju sa iba v pripade
ak mame synchronizované casti kodu

. Synchronized na vsetko?

- Deadlock
- Nevyuzivame subeznost

. Atomic variables (Atomiclnteger) — incrementAndGet,
compareAndSet

Immutable objects

. Nie je ziaduce aby sa objekty menili ,pod rukami”
. Final class

. Final attributes

. Initialize once

. No setters!

. Pozor na collections, pouzite vhodnu triedu (napr.
CopyOnWriteArrayList) — kazdy proces pracuje nad
snapshotom

Runnable vs callable

.- Runnable nevracia hodnoty (return) and nevie hodit checked
exception

Quiz time

Ukladanie objektov

Ulozenie stavu objektu

Pomocou:

Serializacia:[J[J sr minecraft.player.SteveHulJ[1h Z godModel hungerl
maxHungerx

Plain Text: Juraj,1,1,1..

Streamy (prudy)

Serializacia

. Uklada sa cely objektovy graf, automaticky

- All or nothing

. Implements Serializable

. Pokial nechcem/neviem serializovat - transient

Deserializacia

. Nevykonava sa uz konstruktor

\V4

Co ked sa trieda zmeni?

10, NIO, NI02

	Slide 1: Objektovo Orientované programovanie
	Slide 2: Test
	Slide 3: Layout
	Slide 4: Layout managers
	Slide 5: Layouts
	Slide 6: BorderLayout
	Slide 7: Komponenty vo Swingu
	Slide 8: GUI všeobecne
	Slide 9: MVC
	Slide 10: MVC
	Slide 11: MVP
	Slide 12
	Slide 13: Paralelné spracovávanie pomocou vlákien
	Slide 14: Atomickosť
	Slide 15: Immutable objects
	Slide 16: Runnable vs callable
	Slide 17: Quiz time
	Slide 18: Ukladanie objektov
	Slide 19: Streamy (prúdy)
	Slide 20: Serializácia
	Slide 21: Deserializácia
	Slide 22: Čo keď sa trieda zmení?
	Slide 23: io, nio, nio2

