Objektovo Orientovaneé
programovanie

8. Prednaska
LS 2024/2025
Juraj Petrik

10

* FileWriter

* write()

* closeg()

* VSetko mo6ze hodit IOException!

* File - reprezentuje meno a cestu suboru (priecinku)

|O - Buffer

* BufferedWriter
* Preco?
* Disk je pomalsi ako pamat
* Pracujeme s “chunkami”
e flush() — ked chceme zapisat predtym ako zaplnime buffer

10, NlO, NI02

* Pri NIO.2 hovorime zvyCajne o dvoch balikoch:

* Java.nio.file
* Path interface
 Paths class
* Filesclass

e Java.nio.file.attribute — metadata

* Try-with-resources:
* implements Autocloseable
 multiple 10 resources closed in opposite order

Dokumentacia (JavaDoc)

* Predstavte si svoj program ako kniznicu, ktoru niekto chce
pouzivat

e Kvalitna dokumentacia API je kriticka pre (znovu)pouzivanie kodu

* Javadoc su “specialne komentare”: /** **/

. étandardizované, HTML ako Java Standard Library

* Nuti rozmyslat

* Napr. “pred” triedou, rozhranim metodou, atributom

* https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

JavaDoc what (not) to do

e <code> pre keywordy a mena

 Overuse:
* In-line links ({@link})

* Pouzivajte tretiu osobu

* This instead of the ked odkazujeme na objekt z triedy ktoru
opisujeme

* Najlepsie nazvy su samoopisng, tie zbytocne ,,nedokumentujte®

JavaDoc Tagy (na poradi zalezi)

 @author (classes and interfaces only, required)

* @version (classes and interfaces only, required. See footnote 1)
e @param (methods and constructors only)

* @return (methods only)

* @exception (@throws is a synonym added in Javadoc 1.2)

* @see

* @since

* @serial (or @serialField or @serialData)

* @deprecated (see How and When To Deprecate APIs)

JavaDoc tags

* {@link package.class#member label}

e (Msee:

* @see Java
Dcoumentation

* @see "This method performs some function.”
* @see String#toLowerCase() convertToLowerCase

* {@inheritDoc}

JavaDoc Generovanie

* CLI-javadoc —d docs Class.java
* IDE

* Maven — mvn javadoc:javadoc
* Gradle - gradle javadoc

* Vlastne tagy

Logovanie

* Preco?
 Pomoc pri ladeni
* Auditné logy
* Monitoring
* Observabilita

* Viacero urovni (LoglLevel)
* Napr.: Fatal, Error, Warn, Info, Debug, Trace, (Off)

* Ako?
* Timestamp
* Meno triedy
* Log Level
* |ID Vlakna

* java.util.logging

* Log4j

* logback

* Log4)2

* SLF4J) - The Simple Logging Facade for Java

« Standardné kombo:
* SLF4]J + logback
+ SLF4J + log4j2

Java.util.logging

» Qutside World
> Handler

> Logger -

Application

) '- l | ;‘ ormaner
F || e
r tL-

SLF4)

* Simple Logging Facade for Java
* Abstrakcia nad roznymi logovacimi frameworkami — plug & play

* import org.slf4j.Logger;
* import org.slf4j.LoggerFactory;

Some things to consider

* if (logger.iskEnabled(Level.INFQO))

logger.info(String.format("The result is %d.",
superkExpensiveMethod()));

* Hot Path

* Asynchronne logovanie

 Citlivé data

* Include Stack Trace pri logovani vynimiek
e Strojovo spracovatelné logy

log4j2

* Appenders (handlers)
* log4j2.xml

Asynchronne logovanie

* \/ysSsSia priepustnost
* Nizsia latencia

* -- Error handling
* -- pozor na mutable spravy

Quiz time

	Slide 1: Objektovo Orientované programovanie
	Slide 2: IO
	Slide 3: IO - Buffer
	Slide 4: io, nio, nio2
	Slide 5: Dokumentácia (JavaDoc)
	Slide 6: JavaDoc what (not) to do
	Slide 7: JavaDoc Tagy (na poradí záleží)
	Slide 8: JavaDoc tags
	Slide 9: JavaDoc Generovanie
	Slide 10: Logovanie
	Slide 11
	Slide 12: Java.util.logging
	Slide 13: SLF4J
	Slide 14: Some things to consider
	Slide 15: log4j2
	Slide 16: Asynchrónne logovanie
	Slide 17: Quiz time

