
Objektovo Orientované 
programovanie

9. Prednáška
LS 2024/2025

Juraj Petrík



Projekt

• Do 27.4.2025 20:00
• Za final max 20b
• Prezentovanie na cviceniach
• Priebezna praca
• Implementacia NEstaci, je potrebne vediet co a preco robite

• Unit testy getterov a setterov – pre reporty



YT Playlist

• Pridane nahravky z pravej strany, snad lepsia viditelnost



Pozvané prednášky

• 13.5.2025 9:00: Java/Kotlin/IntelliJ IDEA/JetBrains Ecosystem 
(Rober Novotny @ JetBrains)

• 15.5.2025 9:00: Observablity in software development from
DEVops perspective (Adam Hamsik & Martin Hauskrech @ 
Labyrinth Labs)

• Mozno donesu aj nejaky merch ☺



Java reflecion API (java.lang.reflect)

• Skúmanie a modifikovanie programu počas behu (”seba samého”)
• Inšpekcia tried, rozhraní, metód počas behu (runtime)
• Vytváranie nových inštancií tried
• Dynamické volanie metód
• Get and set atributov metod

• Pozor, nerobí z Javy dynamický jazyk (nevieme pridávať atribúty, 
metódy, triedy atď.) a nie vždy podporuje „OOP“



Jadro java.lang.reflect

• Class
• Field
• Method
• Constructor
• Modifier



get() vs 
getDeclared()
https://docs.oracle.com/javase/tutorial/refl
ect/class/classMembers.html

https://docs.oracle.com/javase/tutorial/reflect/class/classMembers.html
https://docs.oracle.com/javase/tutorial/reflect/class/classMembers.html


getMethods() vs 
getDeclaredMethods()

Methods getMethods() getDeclaredMethods

public

protected

private

static public

static protected

static private

default public

default protected

default private

inherited public

inherited protected

inherited private

inherited static private

inherited static protected

inherited static private

default inherited public

default inherited protected

default inherited private



Proxy pattern

• https://refactoring.guru/design-patterns/proxy

https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy


Real world usage

• Spring framework – e.g. proxies (AOP), configs (XML)
• Hibernate – e.g. fields
• JUnit, Mockito – e.g. Runners
• Jackson/GSON – e.g. fields
• JavaFX, Swing 



XML

• eXtensible Markup Language

• Konfiguračné súbory (napr. Maven, Spring), prenos dát

• Pomerne ukecané

• Stromová štruktúra:

<?xml version="1.0" encoding="UTF-8"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>e XML File 



XML structure



XML Schema

• Predpis ako má (konkrétne) XML vyzerať:
<xs:element name="note">

<xs:complexType>
<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>



javax.xml.*

• DOM (Document Object Model) - Tree-based in-memory
representation

• SAX (Simple API for XML) - Event-based streaming parser
• StAX (Streaming API for XML) - Pull-parser approach



Maven

• Project management
• (Build)
• (Manage dependencies)

• Standardizovana struktura projektov
• Dependency hell!
• Integracia CI/CD
• Necheme to isté púšťať ručne všetko stále dokola



Maven

• POM (Project Object Model) – pom.xml
• Lifecycle and Phases (clean, compile, test, package, install, 

deploy)
• Dependency Management
• Repositories (local, central, remote)



Lifecycle
• mvn clean: deletes the target directory.

• mvn compile: compiles source code.

• mvn test: runs unit tests.

• mvn package: creates JAR/WAR file.

• mvn install: installs artifact in local 
repository.

• mvn dependency:tree: shows 
dependency hierarchy.



pom.xml
• <project>
• <modelVersion>4.0.0</modelVersion>
• <groupId>com.example</groupId>
• <artifactId>my-app</artifactId>
• <version>1.0.0</version>
•

• <dependencies>
• <dependency>
• <groupId>junit</groupId>
• <artifactId>junit</artifactId>
• <version>4.12</version>
• <scope>test</scope>
• </dependency>
• </dependencies>
• </project>



Quiz time


	Slide 1: Objektovo Orientované programovanie
	Slide 2: Projekt
	Slide 3: YT Playlist
	Slide 4: Pozvané prednášky
	Slide 5: Java reflecion API (java.lang.reflect)
	Slide 6: Jadro java.lang.reflect
	Slide 7: get() vs getDeclared()
	Slide 8: getMethods() vs getDeclaredMethods()
	Slide 9: Proxy pattern
	Slide 10: Real world usage
	Slide 11: XML
	Slide 12: XML structure
	Slide 13: XML Schema
	Slide 14: javax.xml.*
	Slide 15: Maven
	Slide 16: Maven
	Slide 17: Lifecycle
	Slide 18: pom.xml
	Slide 19: Quiz time

