Objektovo Orientovaneé
programovanie

9. Prednaska
LS 2024/2025
Juraj Petrik

Projekt

e D0 27.4.2025 20:00
e Za final max 20b

Prezentovanie na cviceniach
Priebezna praca

mplementacia NEstaci, je potrebne vediet co a preco robite

Unit testy getterov a setterov — pre reporty

YT Playlist

* Pridane nahravky z pravej strany, snad lepsia viditelnost

Pozvane prednasky

* 13.5.2025 9:00: Java/Kotlin/IntelliJ IDEA/JetBrains Ecosystem
(Rober Novotny @ JetBrains)

* 15.5.2025 9:00: Observablity in software development from
DEVops perspective (Adam Hamsik & Martin Hauskrech @

Labyrinth Labs)

* Mozno donesu aj nejaky merch ©

Java reflecion API (java.lang.reflect)

 Skumanie a modifikovanie programu pocas behu (’seba sameého”)
* InSpekcia tried, rozhrani, metdd pocas behu (runtime)

* \lytvaranie novych instancii tried

 Dynamickeé volanie metdd

* Get and set atributov metod

* Pozor, nerobi z Javy dynamicky jazyk (nevieme pridavat atributy,
metody, triedy atd.) a nie vzdy podporuje ,,O0P*

Jadro java.lang.reflect

* Class

* Field

* Method

* Constructor
* Modifier

Class Methods for Locating Fields

Cclass API List of members?||Inherited members?||Private members?
|getDeclaredField () ” no ” no ” yes |
eeriea0 o | v [e
|getDeclaredFields (}“ yes ” no ” yes |
oo | v e | w]

Class Methods for Locating Methods

class API List of members?||Inherited members?||Private members?
et VS |getDeclaredMethod () H no ” no ” yes
g |getM6th0d() H no ” yes ” no

|getDeclaredMethods () H yes ” no ” yes |

getDeclared T S N

Class Methods for Locating Constructors

https://docs.oracle.com/javase/tutorial/refl Class API List of members?||Inherited members?||Private members?

ect/class/classMembers.html getDeclaredConstructor () no N/AT yes
getConstructor () no N,fA'I no
getDeclaredConstructors () yes N/AT yes
getConstructors () yes N/A' no

1 Constructors are not inherited.

https://docs.oracle.com/javase/tutorial/reflect/class/classMembers.html
https://docs.oracle.com/javase/tutorial/reflect/class/classMembers.html

Methods

public

getMethods()

{

getDeclaredMethods

S

protected

private

static public

static protected

static private

default public

default protected

default private

inherited public

inherited protected

inherited private

inherited static private

inherited static protected

inherited static private

default inherited public

default inherited protected

default inherited private

XX S| X X|4 X[X S| X X|4 X[X {|X X

XX XX X|X X|X X[S S8 §[S S8 S

getMethods() vs
getDeclaredMethods

Proxy pattern

Client

Client

Client

* https://refactoring.guru/design-patterns/proxy

https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy
https://refactoring.guru/design-patterns/proxy

Real world usage

* Spring framework — e.g. proxies (AOP), configs (XML)
* Hibernate — e.g. fields

* JUnit, Mockito — e.g. Runners

* Jackson/GSON - e.g. fields

* JavaFX, Swing

XML

« eXtensible Markup Language

- Konfiguracné subory (napr. Maven, Spring), prenos dat
- Pomerne ukecane

« Stromova struktura:

’xml version="1.0" encoding="UTF-8"?
note
to>Tove</to
from>Jani</from
heading>Reminder</heading

body>Don't forget me this weekend!</body
/note

XML structure

Root element:

<hookstore:
Parent
Child
Aftribute: Elerment: Attribute:;
*lang” =hookz “categary”
Elernent: Elernent: Elernent: Element:
<titlex <authorz ZYEars Lprices
N
Siblings
Text: Text: Text: Text:
Everyday Italian Glada De 2005 20.00
Laurentiis

XML Schema

* Predpis ako ma (konkrétne) XML vyzerat:
<Xs:element name="note">

<Xs:complexType>
<{XS:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from’ type="xs:string’/>
<xs:element name="head1n%' type="xs:string"/>
<xs:element name="body" type="xs:string"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

javax.xml>

* DOM (Document Object Model) - Tree-based in-memory
representation

* SAX (Simple API for XML) - Event-based streaming parser
* StAX (Streaming API for XML) - Pull-parser approach

Maven

* Project management
* (Build)
* (Manage dependencies)

* Standardizovana struktura projektov
* Dependency hell!

* Integracia CI/CD
* Necheme to isté pustat rucne vsetko stale dokola

Maven

* POM (Project Object Model) - pom.xml

* Lifecycle and Phases (clean, compile, test, package, install,
deploy)

* Dependency Management
* Repositories (local, central, remote)

Lifecycle

Maven Build Lifecycle

* mvn clean: deletes the target directory. Validate »| Compile > Test

* mvn compile: compiles source code.

* mvn test: runs unit tests.)
Install -« Verify < Package

* mvn package: creates JAR/WAR file.

* mvn install: installs artifact in local !
repository.

Deploy

* mvn dependency:tree: shows
dependency hierarchy.

pom.xml

* <project>

. <modelVersion>4.0.0</modelVersion>
. <groupld>com.example</groupld>

. <artifactld>my-app</artifactid>

J <version>1.0.0</version>

. <dependencies>

. <dependency>

. <groupld>junit</groupld>

. <artifactld>junit</artifactld>
. <version>4.12</version>

. <scope>test</scope>

. </dependency>

. </dependencies>

* </project>

Quiz time

	Slide 1: Objektovo Orientované programovanie
	Slide 2: Projekt
	Slide 3: YT Playlist
	Slide 4: Pozvané prednášky
	Slide 5: Java reflecion API (java.lang.reflect)
	Slide 6: Jadro java.lang.reflect
	Slide 7: get() vs getDeclared()
	Slide 8: getMethods() vs getDeclaredMethods()
	Slide 9: Proxy pattern
	Slide 10: Real world usage
	Slide 11: XML
	Slide 12: XML structure
	Slide 13: XML Schema
	Slide 14: javax.xml.*
	Slide 15: Maven
	Slide 16: Maven
	Slide 17: Lifecycle
	Slide 18: pom.xml
	Slide 19: Quiz time

